
ABSTRACT

While recent advances in computational building per-
formance modeling have been remarkable, their
impact on building design community has been lim-
ited. In this paper we focus on one possible contribut-
ing factor, i.e., insufficient support for navigation in
design-performance space. To address this shortcom-
ing, we concentrate on a process that involves: i) gen-
eration of alternative building designs, ii) performing
parametric performance simulations, and iii) explora-
tion of the resulting design-performance information
space.

MOTIVATION AND BACKGROUND

It is generally believed that the utilization of compu-
tational building performance simulation tools can
contribute to the improvement of building designs.
Accordingly, many such tools have been developed.
Yet, their application in (and thus their impact on) the
building delivery process has been rather limited. In
this paper we focus on one possible contributing fac-
tor, i.e., insufficient support for navigation in design-
performance space. While many efforts have been
invested in algorithms and models that help generate
building performance data, much less has been done
to support the process of organizing, exploring, and
evaluating such data. Some of the past approaches to
augment the capabilities of simulation for effective
design decision support include optimization, statisti-
cal analysis, bi-directional design support, and visual-
ization.

Optimization

Optimization techniques have been proposed to sup-
port design decision making. Arguing that "evalua-
tive information" produced by simulation does not
help much to produce better-performing designs,
optimization techniques offer prescriptive informa-
tion to the designer. Optimization models work with
predefined performance objectives (Radford and
Gero 1988). They can, in principle, consider the
entire solution field. However, this typically requires
that the performance measures are expressed in single
criterion form. Since they are prescriptive rather than

evaluative, their role is related to synthesizing a
design solution rather than evaluating a given solu-
tion. It is arguable that a one-time optimization may
not be what the designer really desires. 

The bi-directional approach

Bi-directional computational design support is
another technology toward provision of "active"
design support environments. It uses an iterative
approach (investigative projection technique) that
converges towards a preferable design using a "quasi-
greedy" procedure (Mahdavi 1993, Mahdavi and Ber-
beridou-Kallivoka 1993, 1994, Mahdavi et al. 1997).
It aims at design refinement using optimization tech-
niques "locally" to proceed from one design state to
another based on objective functions, preferences,
and constraints relevant to the current design state.
Bi-directional computational support enables the
users to make desired changes in performance vari-
ables and observe the corresponding changes in
design variables. A preference-based approach is
used to overcome the ambiguity problem of perfor-
mance-to-design mapping. In this approach, various
internal and external constraints such as building
codes, contextual parameters, technological limita-
tions, and user’s preferences are formalized. The
main shortcoming of the bi-directional approach is its
limited scalability, particularly in view of complex
configurational aspects of buildings (Mahdavi et al.
1997).

Regression analysis

Another approach for design decision support is the
development of regression analysis models. In these
techniques the relationships between different vari-
ables are established mathematically using, for exam-
ple, a least squares approach (Sullivan et al. 1985).
By defining these relationships a better understanding
of the effects of design input parameters on the result-
ing performance attribute is realized (Lam and Hui
1996). Although statistical analysis techniques are
useful in identifying the significance of each design
variable, they do not necessarily offer an environment
that allows for the effective comparison of the perfor-
mance implications of various design decisions.
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Visualization

The vast amount of performance data produced by
simulation tools can reduce the effectiveness of
building performance analysis in the context of the
design process. Post-processing this data into expres-
sive (e.g. graphical) formats needs a sort of expertise
most designers lack. Integration of visualization tools
into simulation environments allows for the represen-
tation of performance data in the form of charts and
graphs automatically after the simulation. However,
visualization is as such insufficient for effective deci-
sion making. There have been some efforts to inte-
grate multiple performance simulation tools with a
visualization environment for the graphic representa-
tion and comparison of performance data. However,
such environments are often grounded on simplistic
views of both buildings and their performance. More-
over, they do not effectively support the understand-
ing of the performance implications of multiple
changes in design. 

In summary, while methods and tools are available
for "generic" visualization and statistical analysis of
engineering data, there is a glaring lack of an effec-
tive and exciting computational environment to gen-
erate, view, and evaluate building performance
information. Current simulation environments do not
support rapid generation of alternative designs for
simulation. They are not equipped with mechanisms
to allow parametric simulation of a design. Further-
more, even if a user would generate alternatives and
simulate them parametrically, the environments still
fail to support comparative and explorative naviga-
tion through the generated result space. These defi-
ciencies in simulation environments are believed to
hinder their wide usage for design improvement.
Overall, the efforts to augment the simulation to
improve design decision making support have not
been very successful. The few attempts toward the
provision of such support are mostly limited and
hardly scalable. 

OVERVIEW OF THE PROPOSED GSN-
SUPPORT SYSTEM

To address the previously discussed shortcomings of
the current simulation environments, we concentrate
on the "GSN" process (generate-simulate-navigate)
involving: i) generation of alternative building
designs, ii) performing parametric performance simu-
lations, and iii) exploration of the resulting design-
performance information space. The nature of our
current GSN support system proposal can be best
described following a typical system operation
sequence:

a) The initial design is entered into the system by
the user. 

b) Design alternatives are generated, either by the
user, or by the system. In the latter case, two
approaches have been considered. The first
approach uses a rule-based system to geometri-
cally modify the initial design. The second
approach relies only on scalarization of the
design variables. The scalarization leads to the
representation of a building as point in an n-
dimensional design space. Each coordinate of
such a space accommodates a salient (either
semantic or geometric) design variable. Exam-
ples of such variables are relative compactness,
relative aperture area, volume-related thermal
mass, and area-weighted thermal transmittance.

c) The entire corpus of design alternatives is sub-
jected to (possibly multi-disciplinary) perfor-
mance modeling. Such modeling may either
rely on detailed numerical simulation (in case
alternatives are geometrically specified) or use
alternative methods that are based on heuristic
knowledge, statistical analysis, or neural net-
work copies of simulation programs (in case
design alternatives are specified in terms of
scalarized indicators of the geometric proper-
ties of the building). 

d) Based on the modeling results, an n-dimen-
sional design-performance space is con-
structed.

e) User can navigate through the design-perfor-
mance space using computational visualization
tools.

f) Preferred designs in the design-performance
space are mapped back to geometrically speci-
fied designs. This reverse-mapping may be
performed by the user, or via a rule-based sys-
tem.

THE GENERATION OF ALTERNATIVE 
DESIGNS

Once the initial design is communicated to the sys-
tem, it is exposed to a systematic alternative design
generation by manipulating its various components
which have impact on the resulting performance mea-
sures. This alternative design generation can be done
either by the user or by the system. In the case of a
design generation by the system, two approaches are
possible. The first approach is a rule-based system to
geometrically modify the initial design. The second
approach utilizes the scalarization of the design vari-
ables.
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The "geometric" approach to design generation

In this approach, there can be two ways of manipulat-
ing a building design to generate alternatives. The
first one is a detailed (geometric) manipulation,
whereby the initial building design can be used as the
base case for geometric derivations. In order to
achieve the direct manipulation of design geometry,
rules are needed. 

A recent work done in this area is the development of
a representation that allows rapid manipulation of
geometric and semantic building information (Suter
1999). In this representation partitioning and refine-
ment rules are applied to geometric entities (struc-
tured in entity hierarchies) in order to manipulate the
geometric information. Furthermore, dimension and
offset constraints are defined which allow the user to
control the manipulation. The attachment of semantic
information to geometric entities are realized via
attribute manipulation rules. It is envisioned that the
modifications to the design can be achieved rapidly
and consistently with the utilization of this represen-
tation.

The second way of manipulation is based on a vol-
ume-equivalent representation of the building. In this
case, the building geometry can be simplified into a
volume-equivalent mass (Figure 1) similar to a repre-
sentation used in Balcomb 1997.

Figure 1. Abstraction of the building geometry
into a volume-equivalent mass

The parametric geometric changes are then made in
the latter (simplified) representation. These manipu-
lations of the simplified representation can also be
realized via rules and constraints similar to those
developed by Suter 1999.

The "scalarized" approach to design 
generation

The "scalarized" approach to alternative design gen-
eration is based on the scalarization of the design
variables. This results in the representation of the
design as a point in an n-dimensional space. From the
performance simulation point of view, each aspect of
a building forms a variable that affects the resulting
performance attributes (Figure 2). 

A parametric simulation of a building will produce
the data to form an n-dimensional design-perfor-
mance information space. In order to create this
space, the design variables must be defined in terms
of scalar values. The selection of the essential design
variables and their definition in numeric terms is a
critical part of this research. Various candidate design
variables are tested for their "expressive" potential
and the most expressive ones are used during the
alternative design generation.

Figure 2. Scalarization of building design
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DESIGN VARIABLES

Building design variables capture either geometric or
non-geometric (semantic) information on the build-
ing. Table 1 lists a few examples of common seman-
tic design variables.

While most semantic design variables are scalar in
nature, geometric design information is more difficult
to express in terms of scalar values. Some familiar
scalar indicators of building geometry are: The ratio
of a building’s length to its width (plan aspect ratio),
the floor-to-floor height, the ratio of a space’s height
to its depth, the ratio of glazing area to the facade
area, and the ratio of the glazing area to floor area (for
rooms).

One important ongoing effort within the framework
of the present research is to develop improved aggre-
gate descriptors of building geometry. The design
variable "relative compactness" is one of the prelimi-
nary results of this effort. It utilizes the relation
between a building’s volume and total surface (enclo-
sure) area. A similar relationship has been established
as the characteristic length (lc = V . A-1 [m]) which is
simply the ratio of a building’s volume (V) to its
envelope area (A). The characteristic length was
used, for example, in LEK-diagram (Line of Euro-
pean K-values) which established a relationship
between the mean heat transfer coefficient of the
building envelope and building geometry (Mahdavi
et al. 1996).

In another effort toward numeric characterization of
building shapes, the relation between volume and
area is explored as related to building’s fabric heat
loss (Markus and Morris 1980). Utilizing the standard
formula for steady-state building heat loss calcula-
tions, this research established the following relation-
ship between (transmission and ventilation) heat loss
(Q in W . m-3 . K-1) and building geometry:

where,

n = number of air changes per hour

For rectangular buildings, the ratio of surface area to
volume is established by using the height (H), length
(L) and width (W) variables of the building. The ratio
of surface area to volume is given by:

where,

.

In order to compare the surface area to volume ratios
of buildings with different shapes, the volumes must
be equal. It has been stated that cube has the least sur-
face area to volume ratio as compared to other shapes
with the same volume (Markus and Morris 1980).
Therefore, the ratio of change (ROC) for the compar-
ison of different building shapes has been derived by
using cube as the reference. The ratio of change has
been calculated by comparing the surface area to vol-
ume ratio of a building to that of a cube with the same
volume:

This ratio is independent of the actual size of the
building and allows thus for the comparison of differ-
ent building shapes. 

In an effort to develop better aggregate descriptors of
building geometry, we used the concepts of charac-
teristic length and the ratio of change to derive the
geometric variable "relative compactness". The mea-
sure of relative compactness of a shape is derived by
comparing the volume to surface area ratio of a shape
to that of the most compact shape with the same vol-
ume. The most compact shape in geometry is sphere,
therefore, when the volume to surface area ratio of
another shape is compared with the sphere’s, the fol-
lowing relationship can be established:

Table 1: Commonly used non-geometric design 
variables

Non-geometric design 
variables

Unit

U

Thermal Mass

Shading Coefficient  -

Visible Transmittance  -

Internal Loads

W m 2– K 1–⋅ ⋅

kg m 2–⋅

W m 2–⋅

Q A(∑ U )⋅ V
1–⋅ n 3

1–⋅+= (Eq. 1)

A V
1–⋅ 2 H

1– γ⋅ ⋅= (Eq. 2)

γ 1 β+( ) α 1– β 1–⋅ ⋅( ) 1+=

α W H
1–⋅=

β L W
1–⋅=

ROC γ 3
1– α2 β⋅( )

1 3⁄
⋅ ⋅= (Eq. 3)
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Even though the sphere is the most compact shape, it
is perhaps not the ideal reference, as most buildings
have orthogonal polyhedronal shapes. Cube is the
most compact polyhedron. Using cube as the refer-
ence shape, we obtain:

Relational and contextual variables

The relational and contextual variables of a design
also affect the way it performs. The contextual vari-
ables are the ones related with the surrounding envi-
ronment’s properties. The relational variables specify
the connection between the design and its context.
The orientation of a building within a site is perhaps
the most common relational variable. It defines how
the building is exposed to outside environment. The
relative height of the ground floor of a building is
another example of a relational variable. The rela-
tional variables can be integrated into design vari-
ables.

Climate is the major contextual variable affecting the
behavior of a building. Even though it is not a design
variable in control of the designer, defining it in sin-
gle numbers and using it during the alternative design
generation could be of interest. 

Traditionally, the most common single-number
descriptors of thermally relevant climatic conditions
are heating and cooling degree days. A step towards
aggregating these is the ratio of heating to cooling
degree days. More elaborate yet compact numeric
methods for characterizations of the climatic context
typically involve the application of fourier analysis to
measured outdoor environmental parameters. The
elevation and density of the surrounding buildings
and vegetation, and the topographical properties of
the site constitute further contextual variables.

SIMULATION OF DESIGN 
ALTERNATIVES

The generated design alternatives are subjected to
performance modeling. For the "geometric"
approach, the performance modeling is a detailed
numerical simulation of the generated design alterna-
tives. Whereas the "scalarized" approach requires the
use of alternative methods that are based on heuristic
knowledge, statistical analysis, or neural network
copies of simulation programs. Among these alterna-
tive methods to numerical simulation an artificial
neural network model is considered for further evalu-
ation.

Artificial neural networks belong to the same general
category of statistical tools as generalized nonlinear
regression models. They are used primarily for func-
tion estimation, complex curve fitting, and pattern
recognition. One advantage of neural networks is that
the framework that they provide makes no assump-
tion about the underlying data. In neural network
modeling, a mathematical model that represents the
relationship between design variables and the perfor-
mance attributes is constructed. Sample data is
needed to generate this model. In order to obtain the
sample data, parametric performance analysis should
be applied to a design. A number of simulations are
needed to represent a broad solution field. 

The first prototype of the proposed system focuses on
typical residential building designs. Thus, a sample of
such buildings are selected. These base case buildings
are used for extensive parametric analysis. The
obtained data is then used to generate a mathematical
building performance model. In neural network mod-
eling, a portion of the data can be used to train the
neural network while the rest is used to test the accu-
racy of the model. 

It is envisioned that a series of these mathematical
models would be constructed in order to cover a rea-
sonably wide range of possible designs. These mod-
els can be categorized according to one or more
parameters. Climate is one possible contextual
parameter that the mathematical model categorization
can be based on. Another contextual parameter is the
site and the surrounding environment. Building size
may also provide a basis for model grouping.

The multi-aspect building performance simulation
system SEMPER (Mahdavi 1999) is used as the sim-
ulation environment. NODEM (Mahdavi and
Mathew 1995), the energy analysis module of SEM-
PER, is the simulation application selected for the
first prototype. 

RCsphere 4.84 V
2 3⁄

A
1–⋅×≅ (Eq. 4)

RCcube 6 V
2 3⁄

A
1–⋅×= (Eq. 5)
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CONSTRUCTION AND EXPLORATION 
OF THE DESIGN-PERFORMANCE 
SPACE

To generate the design-performance space, the per-
formance attributes must also be expressed as single
values. In case aggregate performance indicators are
not generated automatically by the simulation pro-
gram, data must be aggregated via appropriate post-
processing. Examples of thermal performance indica-
tors are shown in Table 2.

The design-performance space can be constructed
based on discretized design variables and perfor-
mance indicators. This is an n-dimensional virtual
space, where n = d + p (d = the number of discrete
design variables, p = the number of discrete perfor-
mance indicators). It can be visualized and explored
using advanced data visualization tools. Thus, the
designer can visualize various views of the solution
space and is able to understand the relationship
between design variables and corresponding perfor-
mance attributes. By visually marking the initial
design’s performance value in the design-perfor-
mance "landscape", the designer can easily under-
stand where the initial design stands within the
overall space. Besides, he/she can explore possible
design alternatives to improve the performance of the
initial design. Advanced representation techniques
can help to visualize certain tendencies within and
relations amongst data.

As the final step, the preferred design(s) (as localized
in the n-dimensional design-performance space)
could be mapped back to topologically specified
designs. This reverse mapping can be achieved by the
user. In this case, the values of the design variables of
preferable designs would provide the informational
basis for the modification of the design’s configura-
tion and properties. 

An alternative to this manual mapping is an auto-
mated reverse mapping mechanism. Here, the
selected result is mapped back to design via a rule-
based system. Rules and constraints which have been
envisioned to generate alternative designs (Suter
1999), may provide a basis for this approach. 

AN ILLUSTRATIVE EXAMPLE

For the purpose of a simple demonstration, the fol-
lowing case explores the neural network model gen-
eration option using sample data obtained from
several parametric simulations of a base building (cp.
Figure 3). 

This base building has a 54 m2 floor area and its
height is 3 meters. It consists of 3 spaces. The win-
dows are located on north and south sides of the
building. The glazing is distributed evenly on both
facades with three windows located symmetrically on
each. The total facade area is 90 m2 and the total per-
centage of glazing on the facade is 10%. (In this spe-
cific case study, the glazing type is fixed and thus, not
subject to parametric variations). The U-value of the
external wall construction is 0.5 W . m-2 . K-1. The
ground slab is 6 cm thick. The air exchange rate is
assumed to be 0.7. 

Figure 3. The base building

The design variables used to generate design alterna-
tives are percentage glazing, U-value of the walls,
and slab thickness. The values assigned for these
design variables are listed in Table 3. Each design
variable has been altered individually while keeping
the other variables constant. 

Table 2: Examples of thermal performance indicators 
and their units

Performance indicator Unit

Annual loads (heating, cooling, elec-
tricity)

kWh

Peak loads kW

Peak temperature oC

Temperature Deviation Factor (TDF) -

Thermal comfort indices 
(PMV and PPD)

-, %

Table 3: The design variables and their values used in 
parametric simulations

Design variable Value

Glazing % 10         25         40

U-value (W . m-2 . K-1) 0.2         0.5         1

Slab thickness (cm)   6          15         30

6 m
9 m

3 m
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Two performance indicators were used for perfor-
mance analysis. These are the annual heating load in

 and temperature deviation factor TDF (cp.
Mahdavi et al. 1997):

where,

ti = average indoor temperature at time step i.

tsp = target indoor temperature.

The energy simulation program (NODEM) was used
for the parametric simulation of the building. The
generated design alternatives were simulated for
Pittsburgh’s climate. The annual heating load was
calculated by the simulation program. The individual
cell temperature data were aggregated to obtain the
temperature deviation factor (TDF).

For the neural network modeling a commercially
available computer simulated neural network
(BraincelTM) was used. The neural net was trained
with the sample data until an acceptable error range
was reached. The trained neural net was also tested
on data which it wasn’t trained. The results obtained
from the neural net were compared with the simula-
tion results and were found to be close. After obtain-
ing the weights for the nodes of the neural net, the
mathematical model was constructed by utilizing the
scaling and activation functions in BraincelTM. The
whole design-performance space was constructed
using this mathematical model.

This enriched design-performance data was visual-
ized in a three dimensional surface graph where the
two design variables, U-value of walls and slab thick-
ness, are plotted against the performance attributes,
annual heating load and TDF. The third variable, per-
centage glazing, can be used for active manipulation
by the user. The user can change this variable’s value
and observe changes in the surface plot. Thus, all the
design variables are actively explored by the user.
Two instances (for 10% glazing and 30% glazing) of
the surface plot for annual heating load are visualized
in Figure 4. Another instance (surface plot for TDF)
is illustrated in Figure 5.

Figure 4. Surface plots for slab thickness and 
U-value, versus heating load (a) 10% glazing, 

(b) 30% glazing

Figure 5. Surface plot for slab thickness and 
U-value, versus TDF (10% glazing)

kWh m 2–⋅

TDF ti tsp–( )2

i 1=

n

∑ n
1–⋅

1 2⁄

= (Eq. 6)
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CONCLUSION

The prototypical realization of a GSN support system
was presented. The system allows for the rapid gener-
ation of alternative designs, parametric simulations,
and navigation through the resulting design-perfor-
mance information space. The research provides
novel methods to capture geometric building infor-
mation in terms of dimensions of a virtual design-per-
formance space. Moreover, it demonstrates that it is
possible to enrich building performance analysis by
integration of parametric analysis and alternative
design generation in computational building perfor-
mance simulation environments.
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